\qquad

F-519

M.A./M.Sc. (Second Semester)

EXAMINATION, May - June, 2022

MATHEMATICS

Paper First

(Advanced Abstract Algebra - II)

Time : Three Hours]
[Maximum Marks:80

Note: Attempt all the sections as directed.
(Section - A)
(Objective/Multiple Choice Questions)

(each 1 mark)

Note: Attempt all questions. Choose the correct answer out of four alternative answers (A) through (D).

1. Which of the following is correct?
(A) Every ring R is an R - module over itself
(B) If U is ideal of R, then U is an R - module
(C) Every abelian group is a module over the ring of integers.
(D) All of these
2. If the ring R has a unit element 1 and $1 \cdot a=a$ for all $a \in m$ then M is called:
(A) A unital R - Module
(B) Right R - Module
(C) Left R-Module
(D) None of these
3. If M is any R - Module, then M and $\{0\}$ are always submodules of M. These are called \qquad submodules of M.
(A) Proper
(B) Improper
(C) Subproper
(D) Irreducible
4. Let $\mathrm{T}: \mathrm{M} \rightarrow \mathrm{N}$ be an R - Homomorphism. If B is a submodule of N , then:
(A) $\quad \mathrm{T}^{-1}(\mathrm{~B})$ is submodule of N
(B) $T^{-1}(B)$ is submodule of M
(C) $T^{-1}(B)$ is kernel of R - homomorphism
(D) $\quad \mathrm{T}^{-1}(\mathrm{~B})=\mathrm{T}(\mathrm{M})$
5. Pick the odd one out.
(A) λ is an Eigen value of A
(B) λ is a solution of the characteristic equation det $(\lambda I-A)=0$
(C) The system of equations $(\lambda I-A)=0$ has trivial solutions.
(D) There is a non-zero vector x such that $A x-\lambda x$
6. Let $\mathrm{T}: \mathrm{V} \rightarrow \mathrm{V}$ be a linear Operator and $T(x)=\lambda x$ for some scalar λ then x is called:
(A) An Eigenvector of T
(B) An Eigenvalue of T
(C) An Eigenspace of T
(D) None of these
7. Suppose that the characteristic polynomial of some matrix A is found to be $p(\lambda)=(\lambda-1)(\lambda-3)^{2}(\lambda-4)^{2}$. What is the size of A
(A) 5×5
(B) 6×6
(C) 5×6
(D) 6×5
8. What is the canonical form of the matrix $A=\left[\begin{array}{ll}1 & 0 \\ 1 & 1\end{array}\right]$
(A) $x+x y+y^{2}$
(B) $x^{2}+x y$
(C) $x^{2}+y^{2}$
(D) $x^{2}+x y+y^{2}$
9. Zero subspace (0) and V are invariant subspace of \vee because:
(A) $\quad O T \neq O$
(B) $O T=O$ and $V T=V$
(C) $\quad O T \neq O$ and $V T=V$
(D) $O T=O$ and $V T=V$
10. A Linear Transformation $T \in A_{F}(V)$ is called nilpotent is
(A) $\quad T=O$
(B) $T^{n} \neq O$
(C) $T^{n}=O$
(D) $T \neq O$
11. Let $T \in A(V)$ be nilpotent. Then the subspace M of V , of dimension m , which is invariant under T , is called cyclic with respect to T if:
(A) $M T^{m} \neq\{0\}, M T^{m-1} \neq\{0\}$
(B) $M T^{m} \neq\{0\}, M T^{m-1}=\{0\}$
(C) $M T^{m}=\{0\}, M T^{m-1} \neq\{0\}$
(D) None of these

F-519
12. Smith normal form of $\left[\begin{array}{lll}1 & 2 & 3 \\ 4 & 5 & 0\end{array}\right]$
(A) $\left[\begin{array}{lll}1 & 0 & 0 \\ 0 & 3 & 0\end{array}\right]$
(B) $\left[\begin{array}{lll}0 & 1 & 0 \\ 3 & 0 & 0\end{array}\right]$
(C) $\left[\begin{array}{lll}0 & 0 & 1 \\ 0 & 3 & 0\end{array}\right]$
(D) $\left[\begin{array}{lll}0 & 1 & 0 \\ 0 & 0 & 3\end{array}\right]$
13. Rank of matrices $\left[\begin{array}{ccc}-2 & 0 & 10 \\ 0 & -3 & -4 \\ 1 & 2 & -1\end{array}\right]$
(A) Rank $=4$
(B) Rank $=2$
(C) Rank = 1
(D) Rank = 3
14. Let A be an mxn matrix over a PID R. Then the submodule of R^{n} generated by the m rows of A is called.
(A) Row Module
(B) Column Matrix
(C) Row Matrix
(D) Column Module
15. Let A be an mxn matrix over a PID. The common value of the row rank of A and the column rank of A is called:
(A) Invariant of A
(B) Rank of A
(C) Smith Normal form
(D) None of these
16. An element x of an R-module M is called \qquad if $\operatorname{Ann}(x) \neq\{0\}$; that is there exists a non-zero element $r \in R$ such that $r x=0$.
(A) Torsion - free Element
(B) Torsion Module
(C) Torsion Element
(D) Torsion - Free Module
17. Find Invariant factor of $\left[\begin{array}{ccc}0 & 4 & 2 \\ -3 & 8 & 3 \\ 4 & -8 & -2\end{array}\right]$ is
(A) $1,(x-2),(x-2)^{2}$
(B) $(x-2),(x-2)^{3}$
(C) $1,(x-2)^{2}$
(D) None of these
18. PIR means:
(A) Principal Right Ideal
(B) Principal Ideal Ring
(C) Principal Ideal Domain
(D) None of these
19. PID Means:
(A) Principal Right Ideal
(B) Principal Ideal Ring
(C) Principal Ideal domain
(D) None of these
20. First Isomorphism Theorem:
(A) $\frac{M}{\operatorname{ker} f} \neq \operatorname{Im} f$
(B) $\quad \operatorname{Kerf} \stackrel{\infty}{=} \operatorname{Im} f$
(C) $\quad \operatorname{Kerf} \stackrel{\infty}{=} N$
(D) None of these

Section - B

(Very Short Answer Type Questions)

(2 marks each)
Note: Attempt all questions. Answer in 2-3 sentences.

1. Define finitely Generated R-module and cyclic module.
2. Define Homomorphism of modules.
3. Define Index of nilpotency.
4. State primary decomposition Theorem.
5. Is $B=\left[\begin{array}{lll}1 & 3 & -2 \\ 1 & 3 & -2 \\ 1 & 3 & -2\end{array}\right]$ nilpotent? If yes, what is its index?
6. Define Noetherian and Artinian Ring.

F-519
7. Define Rational canonical form
8. State Generalized Jordan canonical form.

Section - C

(Short Answer Type Questions)
(3 marks each)

Note Attempt all questions.

1. Let R be commutative ring with unity and let $e \neq 0,1$ be an idempotent. Prove that Re cannot be a free R - module.
2. An R - module M is noetherian if and only if every submodule of M is finitely generated.
3. Show that a Jordan block J may be written as the sum of a scalar matrix and a nilpotent.
4. What is the characteristic polynomial $F(t)$ and minimal polynomial $P(t)$ of the following Jordan block A of order 4
$A=\left(\begin{array}{llll}7 & 1 & 0 & 0 \\ 0 & 7 & 1 & 0 \\ 0 & 0 & 7 & 1 \\ 0 & 0 & 0 & 7\end{array}\right)$ What are the characteristic roots of A ?
5. Obtain smith normal form \& rank for the matrix with inte-
gral enmies $\left[\begin{array}{lll}1 & 2 & 3 \\ 4 & 5 & 0\end{array}\right]$
6. Let R be a principal ideal domain, and let M be an R module. Then $\operatorname{Tor} M=\{x \in M \mid x$ is torsion $\}$ is a submodule OPM.
7. Find out the rational canonical form of the matrix whose invariant factors are $(x-3),(x-3)(x-1),(x-3)(x-1)^{2}$
8. Explain Generalized Jordan Form over any field.

Section - D

(Long Answer Type Questions)

(5 marks each)

Note: Attempt all questions.

1. Let M be a free R -module with a basis $\left\{e_{1}, e_{2},-, e_{n}\right\}$ Then
$M \stackrel{\cong}{=} R^{n}$.
OR
State and prove Wedderburn Artin Theorem.
2. Let $\lambda_{1}, \lambda_{2}, \ldots, \lambda k \in F$ be distinct characteristic roots of $T \in A(V)$ and $V_{1}, V_{2}, \ldots, \ldots, V_{k}$ be characteristic vectors of T belonging to $\lambda_{1}, \lambda_{2}, \ldots \lambda k$ resp. Then $V_{1}, V_{2}, \ldots \ldots, V_{k}$ are linearly independent over F.

OR

Let $T \in A(V)$. Then the characteristic and minimal polynomial for T have the same roots.
3. Find the Jordan Canonical form of A:
$A=\left(\begin{array}{cccc}0 & 0 & 0 & -1 \\ 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & -2 \\ 0 & 0 & 1 & 0\end{array}\right)$
F-519

State and prove fundamental theorem on Nilpotent.
4. Find the Invariant factors of the matrix
$\left[\begin{array}{ccc}-x & 4 & -2 \\ -3 & 8-x & 3 \\ 4 & -8 & -2-x\end{array}\right]$ over the ring $\mathrm{Q}[\mathrm{x}]$. Also find the
rank.

OR

Find Invariant factors, elementary divisors and Jordan canonical form of the matrix.

$$
\left[\begin{array}{cccc}
5 & \frac{1}{2} & -2 & 4 \\
0 & 5 & 4 & 4 \\
0 & 0 & 5 & 3 \\
0 & 0 & 0 & 4
\end{array}\right]
$$

