Roll No. To

Total Printed Pages -11

F - 519

M.A./M.Sc. (Second Semester) EXAMINATION, May - June, 2022 MATHEMATICS

Paper First

(Advanced Abstract Algebra - II)

Time : Three Hours]

[Maximum Marks:80

Note: Attempt all the sections as directed.

(Section - A)

(Objective/Multiple Choice Questions)

(each 1 mark)

Note: Attempt all questions. Choose the correct answer out of four alternative answers (A) through (D).

- 1. Which of the following is correct?
 - (A) Every ring R is an R module over itself
 - (B) If U is ideal of R, then U is an R module
 - (C) Every abelian group is a module over the ring of integers.
 - (D) All of these

P.T.O.

- 2. If the ring R has a unit element 1 and $1 \cdot a = a$ for all $a \in m$ then M is called:
 - (A) A unital R Module
 - (B) Right R Module
 - (C) Left R Module
 - (D) None of these
- 3. If M is any R Module, then M and {0} are always submodules of M. These are called ______submodules
 - of M.
 - (A) Proper
 - (B) Improper
 - (C) Subproper
 - (D) Irreducible
- 4. Let $T:M \rightarrow N$ be an R Homomorphism. If B is a submodule of N, then:
 - (A) T^{-1} (B) is submodule of N
 - (B) T^{-1} (B) is submodule of M
 - (C) T^{-1} (B) is kernel of R homomorphism
 - (D) $T^{-1}(B) = T(M)$
- 5. Pick the odd one out.
 - (A) λ is an Eigen value of A
 - (B) λ is a solution of the characteristic equation det $(\lambda I A) = 0$
 - (C) The system of equations $(\lambda I A) = 0$ has trivial solutions.
 - (D) There is a non zero vector x such that $Ax \lambda x$

F - 519

- Let T:V→ V be a linear Operator and T(x) = λx for some scalar λ then x is called:
 - (A) An Eigenvector of T
 - (B) An Eigenvalue of T
 - (C) An Eigenspace of T
 - (D) None of these
- 7. Suppose that the characteristic polynomial of some matrix A is found to be $p(\lambda) = (\lambda 1)(\lambda 3)^2(\lambda 4)^2$. What is the size of A
 - (A) 5 × 5
 - (B) 6 × 6
 - (C) 5×6
 - (D) 6 × 5
- 8. What is the canonical form of the matrix $A = \begin{bmatrix} 1 & 0 \\ 1 & 1 \end{bmatrix}$
 - (A) $x + xy + y^2$
 - (B) $x^2 + xy$
 - (C) $x^2 + y^2$
 - (D) $x^2 + xy + y^2$

- [4]
- 9. Zero subspace (0) and V are invariant subspace of V because:
 - (A) $OT \neq O$
 - (B) OT = O and VT = V
 - (C) $OT \neq O and VT = V$
 - (D) OT = O and VT = V

10. A Linear Transformation $T \in A_F(V)$ is called nilpotent is

- (A) T = O
- (B) $T^n \neq O$
- (C) $T^n = O$
- (D) $T \neq O$
- Let T ∈ A(V) be nilpotent. Then the subspace M of V, of dimension m, which is invariant under T, is called cyclic with respect to T if:
 - (A) $MT^m \neq \{0\}, MT^{m-1} \neq \{0\}$
 - (B) $MT^m \neq \{0\}, MT^{m-1} = \{0\}$
 - (C) $MT^m = \{0\}, MT^{m-1} \neq \{0\}$
 - (D) None of these

F - 519

[5]	
12. Smith normal form of $\begin{bmatrix} 1 & 2 & 3 \\ 4 & 5 & 0 \end{bmatrix}$	
(A) $\begin{bmatrix} 1 & 0 & 0 \\ 0 & 3 & 0 \end{bmatrix}$	
(B) $\begin{bmatrix} 0 & 1 & 0 \\ 3 & 0 & 0 \end{bmatrix}$	
$(C) \begin{bmatrix} 0 & 0 & 1 \\ 0 & 3 & 0 \end{bmatrix}$	
(D) $\begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 3 \end{bmatrix}$	
13. Rank of matrices	
(A) Rank = 4	
(B) Rank = 2	
(C) Rank = 1	
(D) Rank = 3	
F - 519	P.T.O.

[6]

14. Let A be an mxn matrix over a PID R. Then the submodule of R^n generated by the m rows of A is called.

(A)	Row Module
-----	------------

- (B) Column Matrix
- (C) Row Matrix
- (D) Column Module
- 15. Let A be an mxn matrix over a PID. The common value of the row rank of A and the column rank of A is called:
 - (A) Invariant of A
 - (B) Rank of A
 - (C) Smith Normal form
 - (D) None of these
- 16. An element x of an R module M is called _____ if $Ann(x) \neq \{0\}$; that is there exists a non zero element $r \in R$ such that rx = 0.
 - (A) Torsion free Element
 - (B) Torsion Module
 - (C) Torsion Element
 - (D) Torsion Free Module
- F 519

[8]

20. First Isomorphism Theorem:

(A)
$$\frac{M}{\ker f} \stackrel{\infty}{\neq} \operatorname{Im} f$$

- (B) $Kerf \stackrel{\infty}{=} Im f$
- (C) $Kerf \stackrel{\infty}{=} N$
- (D) None of these

Section - B

(Very Short Answer Type Questions)

(2 marks each)

Note: Attempt all questions. Answer in 2 - 3 sentences.

- 1. Define finitely Generated R module and cyclic module.
- 2. Define Homomorphism of modules.
- 3. Define Index of nilpotency.
- 4. State primary decomposition Theorem.

5. Is B =
$$\begin{bmatrix} 1 & 3 & -2 \\ 1 & 3 & -2 \\ 1 & 3 & -2 \end{bmatrix}$$
 nilpotent? If yes, what is its index?

- 6. Define Noetherian and Artinian Ring.
- F 519

[9]

- 7. Define Rational canonical form
- 8. State Generalized Jordan canonical form.

Section - C

(Short Answer Type Questions)

(3 marks each)

P.T.O.

Note Attempt all questions.

- 1. Let R be commutative ring with unity and let $e \neq 0,1$ be an idempotent. Prove that Re cannot be a free R module.
- 2. An R module M is noetherian if and only if every submodule of M is finitely generated.
- 3. Show that a Jordan block J may be written as the sum of a scalar matrix and a nilpotent.
- 4. What is the characteristic polynomial F(t) and minimal polynomial P(t) of the following Jordan block A of order 4

 $A = \begin{pmatrix} 7 & 1 & 0 & 0 \\ 0 & 7 & 1 & 0 \\ 0 & 0 & 7 & 1 \\ 0 & 0 & 0 & 7 \end{pmatrix}$ What are the characteristic roots of A?

5. Obtain smith normal form & rank for the matrix with inte-

gral enmies $\begin{bmatrix} 1 & 2 & 3 \\ 4 & 5 & 0 \end{bmatrix}$

6. Let R be a principal ideal domain, and let M be an R module. Then $TorM = \{x \in M | x \text{ is torsion}\}$ is a submodule OPM.

F - 519

[10]

- 7. Find out the rational canonical form of the matrix whose invariant factors are $(x-3), (x-3)(x-1), (x-3)(x-1)^2$
- 8. Explain Generalized Jordan Form over any field.

Section - D

(Long Answer Type Questions)

(5 marks each)

Note: Attempt all questions.

1. Let M be a free R - module with a basis $\{e_1, e_2, -, e_n\}$ Then

 $M \stackrel{\infty}{=} R^n$.

OR

State and prove Wedderburn Artin Theorem.

2. Let $\lambda_1, \lambda_2, \dots, \lambda k \in F$ be distinct characteristic roots of $T \in A(V)$ and V_1, V_2, \dots, V_k be characteristic vectors of T belonging to $\lambda_1, \lambda_2, \dots, \lambda k$ resp. Then V_1, V_2, \dots, V_k are linearly independent over F.

OR

Let $T \in A(V)$. Then the characteristic and minimal polynomial for T have the same roots.

3. Find the Jordan Canonical form of A:

$$A = \begin{pmatrix} 0 & 0 & 0 & -1 \\ 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & -2 \\ 0 & 0 & 1 & 0 \end{pmatrix}$$

[11]

OR

State and prove fundamental theorem on Nilpotent.

4. Find the Invariant factors of the matrix

$$\begin{bmatrix} -x & 4 & -2 \\ -3 & 8-x & 3 \\ 4 & -8 & -2-x \end{bmatrix}$$
 over the ring Q [x]. Also find the

rank.

OR

Find Invariant factors, elementary divisors and Jordan canonical form of the matrix.

$$\begin{bmatrix} 5 & \frac{1}{2} & -2 & 4 \\ 0 & 5 & 4 & 4 \\ 0 & 0 & 5 & 3 \\ 0 & 0 & 0 & 4 \end{bmatrix}$$